↳ ITRS
↳ ITRStoIDPProof
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
ackNat(FALSE, x, y) → 0@z
f(TRUE, x) → f(>=@z(ack(10@z, 10@z), x), +@z(x, 1@z))
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
ackNat(FALSE, x, y) → 0@z
f(TRUE, x) → f(>=@z(ack(10@z, 10@z), x), +@z(x, 1@z))
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(0) -> (1), if (ACK(10@z, 10@z) →* ACK(x[1], y[1]))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(=@z(y[2], 0@z) →* TRUE))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(=@z(y[2], 0@z) →* FALSE))
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(-@z(x[3], 1@z) →* x[1]))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
(5) -> (0), if ((+@z(x[5], 1@z) →* x[0])∧(>=@z(ack(10@z, 10@z), x[5]) →* TRUE))
(5) -> (5), if ((+@z(x[5], 1@z) →* x[5]a)∧(>=@z(ack(10@z, 10@z), x[5]) →* TRUE))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(7) -> (1), if ((ack(x[7], -@z(y[7], 1@z)) →* y[1])∧(-@z(x[7], 1@z) →* x[1]))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(0) -> (1), if (ACK(10@z, 10@z) →* ACK(x[1], y[1]))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(=@z(y[2], 0@z) →* TRUE))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(=@z(y[2], 0@z) →* FALSE))
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(-@z(x[3], 1@z) →* x[1]))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
(5) -> (0), if ((+@z(x[5], 1@z) →* x[0])∧(>=@z(ack(10@z, 10@z), x[5]) →* TRUE))
(5) -> (5), if ((+@z(x[5], 1@z) →* x[5]a)∧(>=@z(ack(10@z, 10@z), x[5]) →* TRUE))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(7) -> (1), if ((ack(x[7], -@z(y[7], 1@z)) →* y[1])∧(-@z(x[7], 1@z) →* x[1]))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(=@z(y[2], 0@z) →* TRUE))
(3) -> (1), if ((+@z(y[3], 1@z) →* y[1])∧(-@z(x[3], 1@z) →* x[1]))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(7) -> (1), if ((ack(x[7], -@z(y[7], 1@z)) →* y[1])∧(-@z(x[7], 1@z) →* x[1]))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(=@z(y[2], 0@z) →* FALSE))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
(1) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧x[2]=x[3]∧+@z(y[3], 1@z)=y[1]1∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧x[4]=x[2]∧=@z(y[2], 0@z)=TRUE∧-@z(x[3], 1@z)=x[1]1∧y[1]1=y[4]1∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧y[2]=y[3]∧x[1]1=x[4]1∧y[4]=y[2] ⇒ COND2(TRUE, x[3], y[3])≥NonInfC∧COND2(TRUE, x[3], y[3])≥ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))∧(UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥))
(2) (>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<=@z(y[1], 0@z)=TRUE∧>=@z(-@z(x[1], 1@z), 0@z)=TRUE∧>=@z(+@z(y[1], 1@z), 0@z)=TRUE ⇒ COND2(TRUE, x[1], y[1])≥NonInfC∧COND2(TRUE, x[1], y[1])≥ACK(-@z(x[1], 1@z), +@z(y[1], 1@z))∧(UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥))
(3) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧(-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(5) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧(-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(6) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧(-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(7) (x[1] ≥ 0∧1 + y[1] ≥ 0∧(-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(8) (x[1] + -1 ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧1 + y[1] ≥ 0∧(-1)y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧0 ≥ 0∧-1 + (-1)Bound + x[1] ≥ 0)
(9) (1 + x[1] ≥ 0∧1 + y[1] ≥ 0∧(-1)y[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(10) (1 + x[1] ≥ 0∧1 ≥ 0∧0 ≥ 0∧x[1] ≥ 0∧0 ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(11) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[7]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧x[4]=x[2]∧y[1]1=y[4]1∧=@z(y[2], 0@z)=FALSE∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[2]=x[7]∧-@z(x[7], 1@z)=x[1]1∧x[1]1=x[4]1∧y[4]=y[2]∧ack(x[7], -@z(y[7], 1@z))=y[1]1 ⇒ COND2(FALSE, x[7], y[7])≥NonInfC∧COND2(FALSE, x[7], y[7])≥ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥))
(12) (ackNat(&&(>=@z(x[1], 0@z), >=@z(-@z(y[1], 1@z), 0@z)), x[1], -@z(y[1], 1@z))=y[1]1∧>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(x[1], 1@z), 0@z)=TRUE∧>=@z(y[1]1, 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(-@z(x[1], 1@z), ack(x[1], -@z(y[1], 1@z)))∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥))
(13) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(15) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(17) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(21) (x[1] + -1 ≥ 0∧x[1] + -1 ≥ 0∧x[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1]1 ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(22) (x[1] + -1 ≥ 0∧x[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧y[1] ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(23) (x[1] + -1 ≥ 0∧y[1]1 ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) (y[1]1 ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0)
(25) (x[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1]1 ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(26) (x[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧y[1]1 ≥ 0∧1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧0 ≥ 0)
(27) (COND1(FALSE, x[2], y[2])≥NonInfC∧COND1(FALSE, x[2], y[2])≥COND2(=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(28) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) (0 ≥ 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0)
(31) (0 = 0∧0 = 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0)
(32) (ACKNAT(TRUE, x[4], y[4])≥NonInfC∧ACKNAT(TRUE, x[4], y[4])≥COND1(=@z(x[4], 0@z), x[4], y[4])∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥))
(33) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(34) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(35) (0 ≥ 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0)
(36) (0 ≥ 0∧0 = 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0)
(37) (ACK(x[1], y[1])≥NonInfC∧ACK(x[1], y[1])≥ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥))
(38) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(39) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(40) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) (0 = 0∧0 = 0∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0)
(42) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[6]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧-@z(y[6], 1@z)=y[1]1∧x[4]=x[2]∧x[2]=x[6]∧=@z(y[2], 0@z)=FALSE∧y[1]1=y[4]1∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[1]1=x[4]1∧y[4]=y[2]∧x[6]=x[1]1 ⇒ COND2(FALSE, x[6], y[6])≥NonInfC∧COND2(FALSE, x[6], y[6])≥ACK(x[6], -@z(y[6], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(43) (>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(y[1], 1@z), 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(x[1], -@z(y[1], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(44) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(46) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(48) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(50) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(51) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(52) (y[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(53) (y[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(54) (y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(55) (-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(56) (y[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(57) (1 + y[1] ≥ 0∧y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(ackNat(x1, x2, x3)) = -1 + (-1)x3 + (2)x2 + (-1)x1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND2(x1, x2, x3)) = -1 + x2
POL(cond2(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2
POL(FALSE) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(cond1(x1, x2, x3)) = -1 + (2)x2 + (-1)x1
POL(ACKNAT(x1, x2, x3)) = -1 + x2
POL(ACK(x1, x2)) = -1 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(COND1(x1, x2, x3)) = -1 + x2
POL(ack(x1, x2)) = -1 + x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
COND2(TRUE, x[3], y[3]) → ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))
COND2(FALSE, x[7], y[7]) → ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))
COND2(TRUE, x[3], y[3]) → ACK(-@z(x[3], 1@z), +@z(y[3], 1@z))
COND1(FALSE, x[2], y[2]) → COND2(=@z(y[2], 0@z), x[2], y[2])
ACKNAT(TRUE, x[4], y[4]) → COND1(=@z(x[4], 0@z), x[4], y[4])
ACK(x[1], y[1]) → ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
+@z1 ↔
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 → FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(7) -> (1), if ((ack(x[7], -@z(y[7], 1@z)) →* y[1])∧(-@z(x[7], 1@z) →* x[1]))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(2) -> (7), if ((x[2] →* x[7])∧(y[2] →* y[7])∧(=@z(y[2], 0@z) →* FALSE))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
(1) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[7]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧x[4]=x[2]∧y[1]1=y[4]1∧=@z(y[2], 0@z)=FALSE∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[2]=x[7]∧-@z(x[7], 1@z)=x[1]1∧x[1]1=x[4]1∧y[4]=y[2]∧ack(x[7], -@z(y[7], 1@z))=y[1]1 ⇒ COND2(FALSE, x[7], y[7])≥NonInfC∧COND2(FALSE, x[7], y[7])≥ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥))
(2) (ackNat(&&(>=@z(x[1], 0@z), >=@z(-@z(y[1], 1@z), 0@z)), x[1], -@z(y[1], 1@z))=y[1]1∧>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(x[1], 1@z), 0@z)=TRUE∧>=@z(y[1]1, 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(-@z(x[1], 1@z), ack(x[1], -@z(y[1], 1@z)))∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥))
(3) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(5) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(7) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(9) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(10) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(11) (x[1] + -1 ≥ 0∧y[1]1 ≥ 0∧x[1] + -1 ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(12) (x[1] + -1 ≥ 0∧y[1]1 ≥ 0∧x[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1] ≥ 0∧-1 + (-1)y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0∧(-1)Bound + x[1] ≥ 0)
(13) (y[1]1 ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)x[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0 ⇒ (-1)Bound + x[1] ≥ 0∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧0 ≥ 0)
(14) (-1 + (-1)x[1] ≥ 0∧x[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1]1 ≥ 0∧y[1] ≥ 0∧-1 + (-1)y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧(-1)Bound + x[1] ≥ 0)
(15) (x[1] ≥ 0∧y[1]1 ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(16) (x[1] ≥ 0∧y[1]1 ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0∧1 + y[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))), ≥)∧1 + (-1)Bound + x[1] ≥ 0∧0 ≥ 0)
(17) (COND1(FALSE, x[2], y[2])≥NonInfC∧COND1(FALSE, x[2], y[2])≥COND2(=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(18) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(19) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(20) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(21) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 = 0)
(22) (ACKNAT(TRUE, x[4], y[4])≥NonInfC∧ACKNAT(TRUE, x[4], y[4])≥COND1(=@z(x[4], 0@z), x[4], y[4])∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥))
(23) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(24) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(25) (0 ≥ 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0)
(26) (0 = 0∧0 = 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 = 0∧0 ≥ 0∧0 ≥ 0∧0 = 0)
(27) (ACK(x[1], y[1])≥NonInfC∧ACK(x[1], y[1])≥ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥))
(28) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(29) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(30) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(31) (0 ≥ 0∧0 = 0∧0 = 0∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0)
(32) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[6]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧-@z(y[6], 1@z)=y[1]1∧x[4]=x[2]∧x[2]=x[6]∧=@z(y[2], 0@z)=FALSE∧y[1]1=y[4]1∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[1]1=x[4]1∧y[4]=y[2]∧x[6]=x[1]1 ⇒ COND2(FALSE, x[6], y[6])≥NonInfC∧COND2(FALSE, x[6], y[6])≥ACK(x[6], -@z(y[6], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(33) (>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(y[1], 1@z), 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(x[1], -@z(y[1], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(34) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(36) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(38) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(40) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(41) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(42) (-1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(43) (x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(44) (-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧x[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0∧0 ≥ 0)
(45) (-1 + y[1] ≥ 0∧x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧y[1] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧0 ≥ 0)
(46) (-1 + y[1] ≥ 0∧y[1] ≥ 0∧1 + x[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(47) (y[1] ≥ 0∧1 + y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0 ⇒ 0 ≥ 0∧0 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(ackNat(x1, x2, x3)) = 1 + (-1)x3 + x1
POL(0@z) = 0
POL(TRUE) = 1
POL(&&(x1, x2)) = 1
POL(COND2(x1, x2, x3)) = x2
POL(cond2(x1, x2, x3)) = -1 + (-1)x3 + x2 + (-1)x1
POL(FALSE) = 1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(cond1(x1, x2, x3)) = -1 + (-1)x3 + (2)x2 + x1
POL(ACKNAT(x1, x2, x3)) = 1 + x2 + (-1)x1
POL(ACK(x1, x2)) = x1
POL(+@z(x1, x2)) = x1 + x2
POL(COND1(x1, x2, x3)) = x2
POL(ack(x1, x2)) = 2 + (2)x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
COND2(FALSE, x[7], y[7]) → ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))
COND2(FALSE, x[7], y[7]) → ACK(-@z(x[7], 1@z), ack(x[7], -@z(y[7], 1@z)))
COND1(FALSE, x[2], y[2]) → COND2(=@z(y[2], 0@z), x[2], y[2])
ACKNAT(TRUE, x[4], y[4]) → COND1(=@z(x[4], 0@z), x[4], y[4])
ACK(x[1], y[1]) → ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
(1) (COND1(FALSE, x[2], y[2])≥NonInfC∧COND1(FALSE, x[2], y[2])≥COND2(=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(2) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(5) (0 ≥ 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 = 0∧0 = 0∧0 = 0)
(6) (ACKNAT(TRUE, x[4], y[4])≥NonInfC∧ACKNAT(TRUE, x[4], y[4])≥COND1(=@z(x[4], 0@z), x[4], y[4])∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥))
(7) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(8) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (0 ≥ 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0)
(10) (0 = 0∧0 = 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 = 0∧0 = 0∧0 ≥ 0)
(11) (ACK(x[1], y[1])≥NonInfC∧ACK(x[1], y[1])≥ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥))
(12) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (0 ≥ 0∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0)
(15) (0 = 0∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 ≥ 0∧0 = 0)
(16) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[6]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧-@z(y[6], 1@z)=y[1]1∧x[4]=x[2]∧x[2]=x[6]∧=@z(y[2], 0@z)=FALSE∧y[1]1=y[4]1∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[1]1=x[4]1∧y[4]=y[2]∧x[6]=x[1]1 ⇒ COND2(FALSE, x[6], y[6])≥NonInfC∧COND2(FALSE, x[6], y[6])≥ACK(x[6], -@z(y[6], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(17) (>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(y[1], 1@z), 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(x[1], -@z(y[1], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(18) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(20) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(22) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(24) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(25) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(26) (x[1] + -1 ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0∧x[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(27) (-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧x[1] + -1 ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(28) (-1 + (-1)x[1] ≥ 0∧x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(29) (x[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(30) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + y[1] ≥ 0∧1 + x[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(31) (x[1] ≥ 0∧1 + y[1] ≥ 0∧y[1] ≥ 0∧1 + x[1] ≥ 0∧y[1] ≥ 0 ⇒ 1 ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 + (-1)Bound + (2)y[1] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(ackNat(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND2(x1, x2, x3)) = -1 + (2)x3
POL(cond2(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(FALSE) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(cond1(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(ACKNAT(x1, x2, x3)) = -1 + (2)x3 + (-1)x1
POL(ACK(x1, x2)) = (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(COND1(x1, x2, x3)) = -1 + (2)x3
POL(ack(x1, x2)) = -1 + (-1)x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
ACKNAT(TRUE, x[4], y[4]) → COND1(=@z(x[4], 0@z), x[4], y[4])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
COND1(FALSE, x[2], y[2]) → COND2(=@z(y[2], 0@z), x[2], y[2])
ACK(x[1], y[1]) → ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
&&(FALSE, FALSE)1 ↔ FALSE1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(2) -> (6), if ((x[2] →* x[6])∧(y[2] →* y[6])∧(=@z(y[2], 0@z) →* FALSE))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
(1) (COND1(FALSE, x[2], y[2])≥NonInfC∧COND1(FALSE, x[2], y[2])≥COND2(=@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(2) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(3) ((UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(4) (0 ≥ 0∧0 ≥ 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥))
(5) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧0 = 0∧(UIncreasing(COND2(=@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0)
(6) (ACKNAT(TRUE, x[4], y[4])≥NonInfC∧ACKNAT(TRUE, x[4], y[4])≥COND1(=@z(x[4], 0@z), x[4], y[4])∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥))
(7) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(8) ((UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0∧0 ≥ 0)
(9) (0 ≥ 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 ≥ 0)
(10) (0 ≥ 0∧0 = 0∧(UIncreasing(COND1(=@z(x[4], 0@z), x[4], y[4])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(11) (ACK(x[1], y[1])≥NonInfC∧ACK(x[1], y[1])≥ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥))
(12) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) ((UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 ≥ 0∧0 ≥ 0)
(15) (0 ≥ 0∧0 = 0∧(UIncreasing(ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧0 ≥ 0)
(16) (&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z))=TRUE∧y[2]=y[6]∧=@z(x[4], 0@z)=FALSE∧x[1]=x[4]∧y[1]=y[4]∧-@z(y[6], 1@z)=y[1]1∧x[4]=x[2]∧x[2]=x[6]∧=@z(y[2], 0@z)=FALSE∧y[1]1=y[4]1∧&&(>=@z(x[1]1, 0@z), >=@z(y[1]1, 0@z))=TRUE∧x[1]1=x[4]1∧y[4]=y[2]∧x[6]=x[1]1 ⇒ COND2(FALSE, x[6], y[6])≥NonInfC∧COND2(FALSE, x[6], y[6])≥ACK(x[6], -@z(y[6], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(17) (>=@z(x[1], 0@z)=TRUE∧>=@z(y[1], 0@z)=TRUE∧<@z(x[1], 0@z)=TRUE∧<@z(y[1], 0@z)=TRUE∧>=@z(-@z(y[1], 1@z), 0@z)=TRUE ⇒ COND2(FALSE, x[1], y[1])≥NonInfC∧COND2(FALSE, x[1], y[1])≥ACK(x[1], -@z(y[1], 1@z))∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥))
(18) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(20) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(22) (x[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(24) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(25) (x[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧-1 + (-1)Bound + (2)y[1] ≥ 0∧1 ≥ 0)
(26) (-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] + -1 ≥ 0∧x[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(27) (x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧x[1] + -1 ≥ 0∧y[1] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[1] ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0)
(28) (x[1] ≥ 0∧-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0∧-1 + (-1)x[1] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[1] ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0)
(29) (y[1] ≥ 0∧x[1] ≥ 0∧-1 + (-1)x[1] ≥ 0∧-1 + (-1)y[1] ≥ 0∧-1 + y[1] ≥ 0 ⇒ -1 + (-1)Bound + (2)y[1] ≥ 0∧(UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0)
(30) (-1 + y[1] ≥ 0∧-1 + y[1] ≥ 0∧y[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0∧-1 + (-1)Bound + (2)y[1] ≥ 0)
(31) (y[1] ≥ 0∧y[1] ≥ 0∧1 + y[1] ≥ 0∧x[1] ≥ 0∧1 + x[1] ≥ 0 ⇒ (UIncreasing(ACK(x[6], -@z(y[6], 1@z))), ≥)∧1 ≥ 0∧1 + (-1)Bound + (2)y[1] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(ackNat(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(COND2(x1, x2, x3)) = -1 + (2)x3
POL(cond2(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(FALSE) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(cond1(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(ACKNAT(x1, x2, x3)) = -1 + (2)x3 + (-1)x1
POL(ACK(x1, x2)) = (2)x2
POL(+@z(x1, x2)) = x1 + x2
POL(COND1(x1, x2, x3)) = (2)x3
POL(ack(x1, x2)) = -1 + (-1)x2 + (-1)x1
POL(1@z) = 1
POL(undefined) = -1
COND1(FALSE, x[2], y[2]) → COND2(=@z(y[2], 0@z), x[2], y[2])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
ACKNAT(TRUE, x[4], y[4]) → COND1(=@z(x[4], 0@z), x[4], y[4])
ACK(x[1], y[1]) → ACKNAT(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)), x[1], y[1])
COND2(FALSE, x[6], y[6]) → ACK(x[6], -@z(y[6], 1@z))
FALSE1 → &&(FALSE, FALSE)1
-@z1 ↔
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
FALSE1 → &&(FALSE, TRUE)1
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
(4) -> (2), if ((x[4] →* x[2])∧(y[4] →* y[2])∧(=@z(x[4], 0@z) →* FALSE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ AND
↳ IDP
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(6) -> (1), if ((-@z(y[6], 1@z) →* y[1])∧(x[6] →* x[1]))
(1) -> (4), if ((x[1] →* x[4])∧(y[1] →* y[4])∧(&&(>=@z(x[1], 0@z), >=@z(y[1], 0@z)) →* TRUE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
(5) -> (5), if ((+@z(x[5], 1@z) →* x[5]a)∧(>=@z(ack(10@z, 10@z), x[5]) →* TRUE))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)
(1) (+@z(x[5], 1@z)=x[5]1∧>=@z(ack(10@z, 10@z), x[5])=TRUE∧>=@z(ack(10@z, 10@z), x[5]1)=TRUE∧+@z(x[5]1, 1@z)=x[5]2 ⇒ F(TRUE, x[5]1)≥NonInfC∧F(TRUE, x[5]1)≥F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(2) (&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z))=x1∧9@z=x2∧ack(10@z, 9@z)=x3∧ackNat(x1, x2, x3)=x0 @ PF>=@z_2∧>=@z(x0, x[5])=TRUE∧>=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)), +@z(x[5], 1@z))=TRUE ⇒ F(TRUE, +@z(x[5], 1@z))≥NonInfC∧F(TRUE, +@z(x[5], 1@z))≥F(>=@z(ack(10@z, 10@z), +@z(x[5], 1@z)), +@z(+@z(x[5], 1@z), 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(3) (0@z=x0 @ PF>=@z_2∧&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z))=FALSE∧9@z=x5∧ack(10@z, 9@z)=x4∧>=@z(x0, x[5])=TRUE∧>=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)), +@z(x[5], 1@z))=TRUE ⇒ F(TRUE, +@z(x[5], 1@z))≥NonInfC∧F(TRUE, +@z(x[5], 1@z))≥F(>=@z(ack(10@z, 10@z), +@z(x[5], 1@z)), +@z(+@z(x[5], 1@z), 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(4) (cond1(=@z(x7, 0@z), x7, x6)=x0 @ PF>=@z_2∧&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z))=TRUE∧9@z=x7∧ack(10@z, 9@z)=x6∧>=@z(x0, x[5])=TRUE∧>=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)), +@z(x[5], 1@z))=TRUE ⇒ F(TRUE, +@z(x[5], 1@z))≥NonInfC∧F(TRUE, +@z(x[5], 1@z))≥F(>=@z(ack(10@z, 10@z), +@z(x[5], 1@z)), +@z(+@z(x[5], 1@z), 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(5) (>=@z(0@z, x[5])=TRUE∧>=@z(undefinedInt@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z))), +@z(x[5], 1@z))=TRUE∧>=@z(undefinedInt@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z))), 0@z)=FALSE ⇒ F(TRUE, +@z(x[5], 1@z))≥NonInfC∧F(TRUE, +@z(x[5], 1@z))≥F(>=@z(ack(10@z, 10@z), +@z(x[5], 1@z)), +@z(+@z(x[5], 1@z), 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(6) (ack(10@z, 9@z)=x6∧>=@z(x0, x[5])=TRUE∧>=@z(undefinedInt@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z))), +@z(x[5], 1@z))=TRUE∧cond1(FALSE, 9@z, x6)=x0∧>=@z(undefinedInt@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z))), 0@z)=TRUE ⇒ F(TRUE, +@z(x[5], 1@z))≥NonInfC∧F(TRUE, +@z(x[5], 1@z))≥F(>=@z(ack(10@z, 10@z), +@z(x[5], 1@z)), +@z(+@z(x[5], 1@z), 1@z))∧(UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥))
(7) ((-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0∧-1 + (-1)ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[5] ≥ 0∧0 ≥ 0)
(8) (x0 + (-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[5] ≥ 0∧0 ≥ 0)
(9) ((-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0∧-1 + (-1)ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[5] ≥ 0∧0 ≥ 0)
(10) (x0 + (-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[5] ≥ 0∧0 ≥ 0)
(11) (-1 + (-1)ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧(-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[5] ≥ 0∧0 ≥ 0)
(12) (ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧x0 + (-1)x[5] ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)x[5] ≥ 0)
(13) (-1 + (-1)ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + x[5] ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧-2 + (-1)Bound + x[5] ≥ 0∧0 ≥ 0)
(14) (ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x0 + x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧x[5] ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)x0 + x[5] ≥ 0)
(15) (ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + x0 + x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧x[5] ≥ 0∧x0 ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + x0 + x[5] ≥ 0)
(16) (ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)), 0@z)), 9@z, ack(10@z, 9@z)) + -1 + (-1)x0 + x[5] ≥ 0∧ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ackNat(&&(TRUE, >=@z(ack(10@z, 6@z), 0@z)), 9@z, ack(10@z, 6@z)), 0@z)), 9@z, ack(10@z, 7@z)), 0@z)), 9@z, ack(10@z, 8@z)) ≥ 0∧x[5] ≥ 0∧x0 ≥ 0 ⇒ (UIncreasing(F(>=@z(ack(10@z, 10@z), x[5]1), +@z(x[5]1, 1@z))), ≥)∧0 ≥ 0∧-2 + (-1)Bound + (-1)x0 + x[5] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(ackNat(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (2)x1
POL(0@z) = 0
POL(TRUE) = -1
POL(&&(x1, x2)) = -1
POL(cond2(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (2)x1
POL(FALSE) = -1
POL(=@z(x1, x2)) = -1
POL(>=@z(x1, x2)) = -1
POL(cond1(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (2)x1
POL(10@z) = 10
POL(+@z(x1, x2)) = x1 + x2
POL(F(x1, x2)) = -1 + (-1)x2
POL(ack(x1, x2)) = -1 + (2)x1
POL(1@z) = 1
POL(undefined) = -1
F(TRUE, x[5]) → F(>=@z(ack(10@z, 10@z), x[5]), +@z(x[5], 1@z))
F(TRUE, x[5]) → F(>=@z(ack(10@z, 10@z), x[5]), +@z(x[5], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
cond1(TRUE, x, y) → +@z(y, 1@z)
ackNat(FALSE, x, y) → 0@z
cond2(TRUE, x, y) → ack(-@z(x, 1@z), +@z(y, 1@z))
ack(x, y) → ackNat(&&(>=@z(x, 0@z), >=@z(y, 0@z)), x, y)
cond1(FALSE, x, y) → cond2(=@z(y, 0@z), x, y)
ackNat(TRUE, x, y) → cond1(=@z(x, 0@z), x, y)
cond2(FALSE, x, y) → ack(-@z(x, 1@z), ack(x, -@z(y, 1@z)))
cond1(TRUE, x0, x1)
ack(x0, x1)
ackNat(FALSE, x0, x1)
f(TRUE, x0)
cond2(TRUE, x0, x1)
cond1(FALSE, x0, x1)
ackNat(TRUE, x0, x1)
cond2(FALSE, x0, x1)